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a b s t r a c t 

This work addresses an operational problem of a logistics service provider that consists of finding an 

optimal route for a vehicle carrying customer parcels from a central depot to selected facilities, from 

where autonomous devices like robots are launched to perform last-mile deliveries. The objective is to 

minimize a tardiness indicator based on the customer delivery deadlines. This article provides a better 

understanding of how three major tardiness indicators can be used to improve the quality of service by 

minimizing the maximum tardiness, the total tardiness, or the number of late deliveries. We study the 

problem complexity, devise a unifying Mixed Integer Programming formulation and propose an efficient 

branch-and-Benders-cut scheme to deal with instances of realistic size. Numerical results show that this 

novel Benders approach with a tailored combinatorial algorithm for generating Benders cuts largely out- 

performs all other alternatives. In our managerial study, we vary the number of available facilities, the 

coverage radius of autonomous robots and their speed, to assess their impact on the quality of service 

and environmental costs. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The growth of the world population living in urban areas, 

eaching 54% , poses many logistic challenges. Designing efficient 

nd effective transportation systems for both goods and passen- 

ers, while ensuring mobility, safety and sustainability, is the main 

hallenge for modern city logistics. While both environmental and 

ocial factors are increasingly considered in new transportation 

echnologies and models, the pressure for efficient distribution 

f goods also increases, with users often requiring the so-called 

ame-day deliveries ( Bertsimas, Jaillet, & Martin, 2019; Savelsbergh 

 Woensel, 2016; Taniguchi, 2014; Taniguchi, Thompson, & Ya- 

ada, 2014; 2016 ). 

In 2016, the cost of global parcel delivery, excluding pickup, 

ine-haul, and sorting, amounted to approximately EUR 70 billion 

 Joerss, Schröder, Neuhaus, Klink, & Mann, 2016 ). According to the 

forementioned McKinsey report, over the next ten years, mar- 

et volumes in Germany and the US might reach 5 billion and 

5 billion parcels per year, respectively. The biggest share (often 

igher than 50% ) in total parcel delivery cost goes to last-mile 

elivery. Innovative and disruptive last-mile concepts have been 
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with autonomous robots, European Journal of Operational Research, htt
roposed to cope with the increasing demand for logistic effi- 

iency and competitive prices: pickup points networks, integrated 

ublic and freight transportation, deliveries directly into the cus- 

omer car’s trunk, crowd-shipping, and more recently, the use of 

nmanned aerial vehicles (drones) and self-driving autonomous 

obots ( Boysen, Fedtke, & Schwerdfeger, 2020; Qi, Li, Liu, & Shen, 

018; Savelsbergh & Woensel, 2016 ). 

The use of drones for performing deliveries has gained increas- 

ng interest recently, with many authors investigating new mathe- 

atical models, exact and heuristic algorithms, expanding the lit- 

rature on classical Traveling Salesman Problems (TSP) and the Ve- 

icle Routing Problems (VRP). 

However, from a regulation point of view, the adoption of 

rones on practical delivery scenarios has been rendered increas- 

ngly difficult due to stricter rules concerning their operation and 

afety, especially in urban areas. In this context, self-driving robots 

ave an advantage as they are designed to operate at low speeds, 

.g., pedestrian speed, so that they can safely share existing side- 

alks and bike lanes with people. Self-driving delivery robots were 

ntroduced much later than drones, however many initiatives can 

ow be found such as the self-driving robots developed by e novia 

2020) , Starship (2020) , and Twinswheel (2020) that have been 

ested in many cities around the world. More recently, Amazon 

lso announced the development of their own self-driving deliv- 

ry robots, called Scout ( Amazon, 2020 ). FedEx also tested its six- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Self-driving robots currently being employed in last-mile delivery tests Starship-image (2020) ; Yape-image (2020) . 
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heeled autonomous robot, called the Roxo SameDay Bot ( FedEx, 

020 ) and is testing the Ford Digit robot for delivery. The robots 

y e-novia, Startship and Amazon are depicted in Fig. 1 . These are 

idewalk robots, with a capacity to perform a single delivery before 

eturning to the assigned facility. There exist other recent studies 

see, e.g., Jennings & Figliozzi (2019, 2020) ) in which the routing of 

oad autonomous robots with a larger capacity is considered. The 

atter allows robots to deliver multiple customers within the same 

oute, but this is out of scope of the current paper. 

From the modeling and planning perspective, drone-based and 

obot-based deliveries share some similarities. As pointed out 

y Boysen, Schwerdfeger, & Weidinger (2018) , a major difference 

which also distinguishes our research from the existing literature) 

s the fact that drones allow for unattended delivery, which is 

currently) not possible with robots. This is why the literature on 

rones focuses on minimizing the makespan, rather than on the 

ttended-delivery tardiness indicators studied in this paper. More- 

ver, drones travel at a higher speed, so that the trucks can collect 

hem en-route and reuse them for later deliveries, which does not 

pply to self-driving robots. Further important differences are high- 

ighted in Boysen et al. (2018) , Clarke & Moses (2014) , Goodchild &

oy (2018) , and Jones (2017) . 

Our contribution. This work addresses the problem of a logis- 

ics service provider (LSP) of finding an optimal route for a ve- 

icle carrying customer parcels from a central depot to selected 

acilities, from where autonomous devices like self-driving robots 

re launched to perform attended last-mile deliveries. We call that 

roblem the Uncapacitated Routing-Scheduling Problem (URSP). 

ue dates for customer delivery are agreed beforehand. The ob- 

ective is to serve all customers in a timely fashion. 

Our contributions can be summarized as follows: 

• As delays in the last-mile delivery may be unavoidable, we in- 

troduce three problem variants in which we minimize the fol- 

lowing tardiness measures: the maximum tardiness, the total 

tardiness, or the number of late deliveries. While similar tardi- 

ness indicators have been considered in the humanitarian re- 

lief operations ( Campbell, Vandenbussche, & Hermann, 2008; 

Huang, Smilowitz, & Balcik, 2012 ), they have been mostly ne- 

glected for last-mile delivery. 
• We study the complexity of all these problem variants and de- 

vise a generic Mixed Integer Linear Programming (MILP) formu- 

lation for them. 
• The resulting MILP model involves a large number of vari- 

ables and becomes intractable for instances of realistic size. We 

therefore propose a new problem-tailored Benders decomposi- 

tion framework capable of handling all three URSP variants in a 

unifying way. 
• This new exact method is based on a normalization approach 

which guarantees that the generated Benders cuts are sparse 

and numerically stable and that they can be separated using an 

efficient combinatorial procedure. 
2 
• The method is implemented in a branch-and-cut fashion using 

a modern general purpose MILP solver, which significantly im- 

proves the scalability of our approach. 
• We use our new mathematical model and the exact algorithm 

applied in a realistic setting to answer the following questions: 
• What is the impact of the coverage radius or the speed of 

self-driving robots (or alternatively, the number of available 

facilities) on the quality of service (QoS) measured by one 

of the three tardiness indicators? 
• How are the robot speed and coverage radius affecting the 

environment in terms of: a) the distance traveled by the de- 

livery truck, and b) the CO 2 emissions? 
• How is the structure of the optimal solution affected by the 

choice of the tardiness indicator? 

While VRPs combined with drone deliveries can be seen as an 

stablished concept in the literature, to the best of our knowledge 

ur paper provides a first exact solution framework to optimize 

hree different tardiness indicators in the context of robot-based 

ast-mile operations. The recent work by Boysen et al. (2018) also 

xploits self-driving robots in combination with classical trans- 

ortation problems in a more general variant where robots can 

lso be collected en-route and launched from the trucks. They 

ropose a mathematical model with a single tardiness indicator 

nd provide optimal solutions for instances with less than 10 cus- 

omers, and a multi-start heuristic for larger instances. Our exact 

ethod provides optimal solutions for instances with up to 100 

ustomers, which allows an in-depth managerial study involving 

hree different tardiness indicators. It is complementary to the one 

rovided by Boysen et al. (2018) as the robots cannot be carried on 

oard on the latter one. 

Outline of the paper. In Section 2 we provide a literature 

verview. A formal definition for the URSP is given in Section 3 , 

here we also investigate its complexity. A multi-commodity net- 

ork flow MILP formulation is presented in Section 4 . Due to the 

omplexity of the model, we propose to solve it by a Benders De- 

omposition approach outlined in Section 5 . Details on the separa- 

ion of Benders cuts and subtour-elimination inequalities, and the 

omputation of lower and upper bounds, are given in Section 6 . In 

ection 7 , the three variants of our Benders approach are imple- 

ented and their performance is analyzed. We assess the impact 

f varying the number of available facilities, the robots speed and 

he robots coverage radius. Concluding remarks and future works 

re discussed in Section 8 . 

. Related literature 

To the best of our knowledge, the work of Boysen et al. 

2018) (see below) is the first one that combines scheduling and 

outing aspects, in the context of two-tier urban logistics for par- 

el deliveries using robots. The remaining literature focuses on 

he minimization of operational costs, which may include facility 
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pening and/or allocation costs, while (optionally) respecting time 

indows. Moreover, most of the articles provide heuristic methods, 

ometimes combined with simulations. In this section we briefly 

verview these recent related works and point out the differences 

o some classical network design and routing problems. 

Boysen et al. (2018) studied a capacitated single vehicle 

cheduling problem with truck-based autonomous robots for last- 

ile deliveries. Different from the URSP, in their problem setting 

he truck is loaded with both customer parcels and robots. Also, 

esides the central depot, the customers and the robot facilities, 

he network has additional drop-off points from where robots in 

ruck can be launched to perform deliveries. The truck can be 

eloaded with new robots in the robot facilities. The aim is to find 

 feasible route for the vehicle such that the number of customers 

erved late is minimized. The authors analyze the complexity of 

he problem and propose a MILP formulation (which is capable 

f solving only small instances with up to 10 customers) and a 

euristic method for larger instances, evaluated on randomly gen- 

rated instances. 

Still exploring the concept in which the truck carries both cus- 

omer parcels and delivery robots, Chen, Demir, Huang, & Qiu 

2021b) and Chen, Demir, & Huang (2021a) study the Vehicle Rout- 

ng Problem with Time Windows and Delivery Robots (VRPTWDR). 

ifferent from problem investigated in Boysen et al. (2018) and the 

RSP, the VRPTWDR does not include robot facilities. Instead, cus- 

omers can be served either by a vehicle or a robot and when the 

ehicle stops to perform deliveries, it has to wait for the launched 

obots to return, which implies synchronization constraints. The 

roblem involves multiple vehicles departing from a central de- 

ot and customers have hard time windows. The objective is to 

inimize the overall duration of trucks and robots routes. In both 

orks, the authors present MILP formulations for the problem and 

nalyse the impact of customer locations and delivery time win- 

ows on the routes duration, as well as the benefits in using au- 

onomous robots for the last-mile deliveries. Additionally, Chen 

t al. (2021b) propose a matheuristic capable of solving medium 

ized instances with up to 50 customers. Chen et al. (2021a) devel- 

ped an adaptive large neighborhood search heuristic for solving 

nstances with up to 200 customers. The algorithms are evaluated 

n instances adapted from the VRP wiht Time Windows (VRPTW) 

iterature. 

Related Network Design and Routing Problems. The URSP resem- 

les in some aspects the ring-star problem ( Labbé, Laporte, Martín, 

 Salazar-González, 2004 ), the median cycle problem ( Labbé, La- 

orte, Martín, & Salazar-González, 2005 ), the Steiner ring-star 

roblem ( Xu, Chiu, & Glover, 1999 ), or the Traveling Purchaser 

roblem ( Manerba, Mansini, & Riera-Ledesma, 2017 ), which are all 

outing-location-allocation problems with an underlying ring-star 

tructure. Traditional applications of these problems are in the de- 

ign of circular shaped transportation infrastructure (e.g, a metro 

ine or a motorway), in the design of telecommunication networks, 

r routing. 

The major difference between the URSP and the above men- 

ioned problems is in the nature of the objective function, which 

inimizes the setup costs of the selected nodes and edges in the 

ing and the assignment cost of those nodes not in the ring. Hence, 

hese are pure network network-design problems that mainly ad- 

ress strategic decisions with no scheduling aspects included. On 

he other hand, the URSP is a scheduling problem in which we as- 

ume that the infrastructure is already available, and hence, the 

ajor goal is to minimize the indicators for late deliveries. Indeed, 

n the URSP, we have facility nodes and customer nodes, the ring 

s composed of facility nodes only, but not necessarily all of them 

ill be used and there is no construction or setup cost as no ring

s actually constructed. 
3 
In another family of two-echelon Vehicle Routing Problems (2E- 

RP), the second leg of delivery corresponds to routes instead of 

tars (see, e.g., the recent surveys by Cuda, Guastaroba, & Speranza 

2015) and Guastaroba, Speranza, & Vigo (2016) ). Among the 2E- 

RP studies that focus on sustainable applications for e-commerce 

nd city logistics, we highlight the work of Enthoven, Jargal- 

aikhan, Roodbergen, uit het Broek, & Schrotenboer (2020) who re- 

ently introduced the 2E-VRP with Covering Options. In this prob- 

em, the first echelon consists of truck routes departing from a sin- 

le depot to visit two type of locations: covering locations or satel- 

ite locations, from where goods are picked up by or delivered to 

he customers. At covering locations with parcel lockers, customers 

an pick up goods themselves, whereas at satellite locations, goods 

re transferred to zero-emission vehicles (such as cargo bikes) that 

erform last-mile deliveries. The objective is to design routes cov- 

ring the demands at minimum cost. 

Related Two-Tier Urban Logistics Problems. We now highlight 

everal recent studies that model last-mile deliveries using self- 

riving robots. The major difference to our approach is in the na- 

ure of the objective function (these studies focus on the mini- 

ization of operational costs) and in the methodology (they are all 

euristics). Many of these studies also analyse the trade-offs and 

he pros and cons of the green last-mile deliveries, whereas in our 

ork we primarily focus on the scheduling aspects, assuming that 

he necessary infrastructure is already provided. 

Bakach, Campbell, & Ehmke (2021) study a robot-based urban 

elivery by applying a sequential approach: in the first phase, they 

olve a facility location MILP formulation to find the minimum 

umber p of locations of robot depots to open. In the second 

hase, they solve a p-median MILP formulation in which the op- 

rational cost for robot deliveries are minimized. An advantage of 

uch a two-phase method (as opposed to an integrated approach, 

ike ours) is that larger instances can be tackled. On the other 

and, the approach of Bakach et al. (2021) is a heuristic and there 

s no guarantee that a globally optimal solution can be found. 

Using a similar two-tier network for performing deliveries with 

obots, Poeting, Schaudt, & Clausen (2019a) analyze two time 

lot selection policies for the LSP: in the first one, the customer 

hooses a due window, whereas in the second one, the customer 

riggers the delivery on demand. The authors use a TSP formu- 

ation to find the tour of the truck, and a Simulated Annealing 

euristic to find the reassignment, allocation, and scheduling of the 

elivery robots. An agent-based model is used to simulate several 

ays of parcel deliveries, based on the geographical data for the 

ity of Cologne in Germany. The agent-based simulation approach 

s also used in Poeting, Schaudt, & Clausen (2019b) , where the au- 

hors compare the last-mile delivery of parcels using conventional 

ruck-based deliveries against robot-based deliveries. For the truck 

nly optimization problem, they propose a heuristic based on an 

ILP model for solving the TSP with Precedence Constraints. The 

obot-based delivery problem is modeled as an Orienteering Prob- 

em with Multiple Time Windows and a heuristic is presented. 

Sonneberg, Leyerer, Kleinschmidt, Knigge, & Breitner 

2019) study the Electric Location Routing Problem with Time- 

indows, which employs autonomous robots for last-mile delivery 

f parcels. The objective is to select the best location of the robot 

epots and the corresponding robot routes, while minimizing 

aily operational costs. The authors analyze how the number 

f compartments in the robot affects the solution costs and the 

mount of robots used. 

Another simulation-optimization framework that focuses on the 

rade-off between costs and operations for multi-modal last-mile 

eliveries can be found in Brotcorne, Perboli, Rosano, & Wei (2019) , 

erboli & Rosano (2019) and Perboli, Rosano, Saint-Guillain, & 

izzo (2018) . 
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Fig. 2. Routing-Scheduling feasible solution with 6 late customers, maximum tardi- 

ness 3 and tardiness sum 10. 
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Drone-based deliveries. As pointed out in the introduction, 

rone-based deliveries allow for unattended delivery, and therefore 

he underlying models do not need to take into account scheduling 

onstraints. Concerning the related literature on drone-based de- 

iveries, the closest setting to ours has been considered by Kim & 

oon (2018) , in which a delivery truck loaded with parcels leaves 

he depot and has to serve all the customers. However, contrary 

o our assumptions, only a single drone station is allowed (see our 

entral facility policy in Section 3.2 ) and deliveries are also allowed 

irectly from the truck without using drones. Chauhan, Unnikrish- 

an, & Figliozzi (2019) investigate the Maximum Coverage Facility 

ocation Problem with Drones (MCFLPD) which seeks to locate a 

iven number of facilities and assign drones to them, which will 

erve the demand points. The authors describe an MILP formula- 

ion which incorporates drone energy consumption and range con- 

traints. They introduce greedy and three-stage heuristics for solv- 

ng large instances. Multiple scenarios are considered to show the 

mpact of the drone battery capabilities on coverage. Even though 

he URSP resembles the MCFLPD in the way that it also has to se- 

ect a subset of robot facilities, no scheduling aspects are incorpo- 

ated into the MCFLPD. Kitjacharoenchai, Min, & Lee (2020) study 

 synchronized truck-drone 2E-VRP which allows multiple drones 

o fly from a truck, serve one or multiple customers, and return to 

he same truck for battery swap and package retrieval. Truck routes 

tart and finish at a main depot and customers are visited either 

y a truck or a drone. In the second echelon of the problem, the 

rucks can be seen as moveable intermediate depots. The objec- 

ive minimizes the total arrival time at the depot after completing 

he deliveries. Additional studies on drone-delivery problems can 

e found in the recent surveys by Chung, Sah, & Lee (2020) and 

acrina, Pugliese, Guerriero, & Laporte (2020) . 

For a broader overview on established and novel (alterna- 

ive) last-mile delivery concepts (e.g., crowd-shipping, drones, au- 

onomous robots, autonomous vans, mobile parcel lockers, etc), as 

ell as the related decision problems to be tackled when adopting 

ach concept, we refer the interested reader to the recent surveys 

y Boysen et al. (2020) and Archetti & Bertazzi (2021) . 

. Problem statement and complexity analysis 

In this section we provide a formal problem definition and 

how that finding optimal routes and allocations of customers to 

istribution facilities is an N P -hard problem, whatever the tardi- 

ess indicator. We also show that if the automated vehicle is at 

east as fast as the truck and the coverage radius of each device 

s large enough, the problem becomes tractable. In this case, we 

how that a truck delivery to a “central” facility represents the op- 

imal delivery policy. 

.1. The three variants of the Uncapacitated Routing-Scheduling 

roblem (URSP) 

In the Uncapacitated Routing-Scheduling Problem (URSP) a ve- 

icle departing from a central distribution depot at a predefined 

ime, loaded with the parcels for a group of customers, has to 

isit a subset of facilities where the parcels are unloaded and then 

ransported to their respective customers by autonomous robots. 

n addition, each delivery is supposed to take place before a given 

eadline. The objective is to minimize a tardiness indicator con- 

erning the parcels delivered after the deadline. Fig. 2 shows an 

nstance of the problem and a feasible solution. The delivery dead- 

ines for each customer are in brackets, and the travel times be- 

ween two points are on the arcs. On the solution proposed, 6 

lients are served late, with a maximum tardiness of 3 units, and 

 cumulative tardiness of 10 units. 
4 
More formally, we consider a distribution network composed of 

 central depot, denoted by 0, a set F of local distribution facilities 

nd a set of customers C. Let F 0 = F ∪ { 0 } denote the set of facil-

ties including the depot, then set A F = { (i, j) ∈ F 0 × F 0 , i � = j} and 

 C = F × C. The network is modeled by a directed graph G = (V, A ) ,

here V = C ∪ F 0 is the set of nodes, and A = A F ∪ A C , is the set of

rcs. For each arc (i, j) ∈ A , let t i j be the time required for traveling

rom i to j. Observe that if some customer k ∈ C is not connected 

o facility i ∈ F , one can still assign a time value t ik ≥ L on arc (i, k ) ,

here L is a sufficiently large value. Therefore, we can assume all 

rcs exist between C and F . The following assumptions are made: 

• A single vehicle is used to transfer the parcels for a set C of 

customers from the depot to a subset F ′ ⊆ F of the open facili- 

ties. 
• At each facility i ∈ F ′ , autonomous robots are launched to de- 

liver the parcels to some subset of customers C i ⊆ C assigned to 

it. Each robot can deliver a single customer, and then it returns 

to its facility. 
• No customer is directly served by the depot. This is not a lim- 

iting assumption as a facility could have the same position as 

the depot. 
• A sufficient number of autonomous robots is available at each 

open facility. 
• Without loss of generality, service times and preparation times 

are integrated into the travel times t ik . 
• The range of robots allows to reach every customer from at 

least one of the facilities (otherwise, the customers that cannot 

be reached from any of the available locations can be prepro- 

cessed and removed from the model). 
• The delivery to each customer k ∈ C has to take place before a 

due date u k . A penalty w k may be applied per late time unit. 

These penalty weights w k , if different than one, can be used to 

express priorities among customers. 

Let T ⊂ A be the tour which starts at 0 and visits all facili- 

ies in F ′ ⊂ F . We denote by t T (i, j) the traversal time from node

 to node j in tour T , for i, j ∈ F ′ ∪ { 0 } . Assuming that the truck

eparts from the depot at time 0, for each k ∈ C let t ∗T (0 , k ) =
in i ∈ F ′ { t T (0 , i ) + t ik } be the traversal time of the shortest path, de- 

oted P ∗
T 
(0 , k ) , connecting the depot to client k via arcs of tour T .

hen, we define the positive slack between the travel time along 

he routing path P ∗T (0 , k ) and due date time as: 

 t ∗T (0 , k ) − u k ] 
+ = 

{
t ∗T (0 , k ) − u k , if t ∗T (0 , k ) ≥ u k 

0 , otherwise . 

Additionally, for each k ∈ C, let l k (T ) = 1 if k is served late in

our T , i.e., [ t ∗(0 , k ) − u k ] 
+ > 0 , and l k (T ) = 0 otherwise. The fol-
T 
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owing objective functions (tardiness indicators) are considered in 

his paper: 

• ( min-max ) Minimize the (weighted) maximum tardiness: 

min 

T 

(
max 

k ∈ C 
w k [ t 

∗
T (0 , k ) − u k ] 

+ 
)

• ( min-sum ) Minimize the sum of (weighted) tardiness: 

min 

T 

( ∑ 

k ∈ C 
w k [ t 

∗
T (0 , k ) − u k ] 

+ 

) 

• ( min-num ) Minimize the (weighted) number of late deliveries 

: 

min 

T 

( ∑ 

k ∈ C 
w k l k (T ) 

) 

These objective functions allow to capture different preferences 

f decision makers. Objective min-num is the most restrictive as 

t focuses on minimizing the number of late deliveries, thus mak- 

ng no differentiation between deliveries which are one minute 

ate or one hour late. Thus, it tends to preserve the overall qual- 

ty of service and to reduce the number of potential customer 

omplaints. On the other hand, objectives min-max and min-sum 
inimize the amount of time by which a customer is served after 

he deadline. Nevertheless, among the latter two functions, objec- 

ive min-max does not directly reduce the number of customers 

erved late as it only focuses on a single value which is the max- 

mum delay and all other late deliveries can reach that maximum 

elay with no impact on the objective. 

We also make use of the following notation. Given a customer 

 ∈ C, let F (k ) ⊆ F be the subset of facilities that can serve k (i.e.,

acilities i with t ik < L ). Given the subset S ⊂ V , δ−(S) = { (i, j) ∈
 | i ∈ V \ S, j ∈ S} denotes the set of arcs entering subset S, and
+ (S) = { (i, j) ∈ A | i ∈ S, j ∈ V \ S} denotes the set of arcs leaving

ubset S. For simplicity, if S = { i } , we write δ(i ) instead of δ({ i } ) .
or a subset B ⊆ A , we define x (B ) = 

∑ 

(i, j) ∈ B x i j . 

.2. Complexity and polynomially solvable cases 

So far we have not made any particular assumption related 

o the speed of the delivery truck versus the speed of the au- 

onomous robots, i.e., regarding the structure of the travel times t i j , 

i, j) ∈ A . Nevertheless, the URSP is a two-echelon transportation 

roblem in which different types of vehicles are used in each de- 

ivery stage. Such vehicles are clearly traveling at different speeds, 

ith the autonomous robots being significantly slower than the 

ruck. Consequently, the travel times t i j , (i, j) ∈ A , can be decom-

osed into two components: times on arcs in A F between facilities 

referring to the travel times of the truck), and times on arcs in A C 

etween facilities and customers (referring to the travel times of 

utonomous vehicles). 

For the special case of the URSP in which the travel matrix sat- 

sfies the triangle inequality, which happens, e.g., when the robots 

re at least as fast as the truck, we define the central-facility policy 

s the strategy in which the truck is sent directly from the de- 

ot to a single facility i ∗ ∈ F from where all customers k ∈ C will

e served by autonomous robots, before turning back to the depot. 

nder this policy we can show that all three problem variants can 

e solved in polynomial time. Notice that if we assume that the 

obots have a limited range coverage the triangle inequality may 

e violated, as not all customers could be reached from each facil- 

ty. 

roposition 1. The central-facility policy is optimal for all three vari- 

nts of the URSP if the travel times t i j , (i, j) ∈ A , satisfy the triangle
5 
nequality and the robots have an unlimited range coverage. In this 

ase, the central facility policy can be found in O (| F || C| ) polynomial

ime. 

orollary 1. If robots are at least as fast as the truck and both travel

t constant speed, then the central-facility policy solves the problem 

o optimality in polynomial time. 

roof. Assume robot speed v is v ≥ v ′ , where v ′ is the speed of

he truck. Let us assume that shortest path distances d i j are pre- 

omputed for each pair of distinct nodes i, j ∈ F ∪ C. These dis-

ances d i j satisfy the triangle inequality, so on A F travel times t i j = 

 i j / v ′ also satisfy the triangle inequality. Now for i, j ∈ F and k ∈
, we have t ik = 

d ik 
v ≤ d i j + d jk 

v = 

d i j 

v + t jk ≤
d i j 

v ′ + t jk = t i j + t jk . Hence

ravel times satisfy the triangle inequality on A , so the conditions 

f Proposition 1 are satisfied. �

The following proposition shows that, in general, the URSP is 

 P -hard to solve. All related proofs are given in the Online Sup- 

lement (cf. Section 2 - Complexity results). 

roposition 2. If the travel times t i j , (i, j) ∈ A , do not satisfy the

riangle inequality, then all three variants of the URSP studied in this 

aper are N P -hard, even if travel times on A F satisfy the triangle in- 

quality. 

We point out that Boysen et al. (2018) prove N P -hardness for 

he min-num variant of the problem, in which the truck is al- 

owed to carry robots along the route. If we assume that the robot- 

apacity of the truck is zero, then their proof of NP-hardness is also 

alid for our min-num URSP. This is why in the Online Supplement 

e only provide a detailed proof for the min-max and min-sum 
RSP. 

The next section describes an extended MILP formulation for 

he problem. The formulation uses flow variables to model delivery 

aths for each single customer, i.e., it belongs to a family of multi- 

ommodity flow (MCF) formulations for routing problems (see, e.g., 

etchford & Salazar-González (2015) ). 

. MILP formulations 

In the URSP, we assume that there are enough autonomous 

obots available at the distribution facilities so that all the deliv- 

ry requests can be covered. The model is based on the following 

roperty: 

roperty 3. For all three URSP variants, there always exists an op- 

imal solution such that the delivery truck stops at each distribution 

acility at most once. 

We now devise a multi-commodity flow MILP formulation for 

he problem. The proposed model uses the following decision vari- 

bles: 

f k 
i j 
= 

{
1 , if arc (i, j) is on the delivery truck path to customer k 

0 , otherwise 

(i, j) ∈ A F , k ∈ C

z ik = 

{ 

1 , if k is served by autonomous device launched from 

facility i 

0 , otherwise 

k ∈ C, i ∈ F (k ) 

x i j = 

{
1 , if arc (i, j) is on the tour of the delivery truck 

0 , otherwise 

(i, j) ∈ A F 

s k = 

{
0 , if customer k is served in time ≤ u k 
number of late time units , otherwise 

k ∈ C

Notice that variables f k 
i j 

can be used to model both arcs defining 

he vehicle tour and assignment of customers to facilities. How- 

ver, to avoid redundancies, variables f k are defined only on A 
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nd for the arcs on A C we use the additional set of variables z ik to

epresent the assignment of customer k ∈ C to facility i ∈ F (k ) . 

The set of URSP feasible solutions can now be modeled by the 

ollowing set of constraints: ∑ 

i, j) ∈ A F 
t i j f 

k 
i j + 

∑ 

i ∈ F (k ) 

t ik z ik ≤ u k + s k k ∈ C (1) 

 

j∈ F 0 
f k ji −

∑ 

j∈ F 0 
f k i j = 

{ −1 , if i = 0 

z ik , if i ∈ F (k ) 
0 , otherwise 

i ∈ F , k ∈ C (2) 

f k i j ≤ x i j (i, j) ∈ A F , k ∈ C (3) 

 ik ≤ x (δ−(i )) k ∈ C, i ∈ F (k ) (4) 

∑ 

 ∈ F (k ) 

z ik = 1 k ∈ C (5) 

 ik ∈ { 0 , 1 } k ∈ C, i ∈ F (k ) (6) 

f k i j ≥ 0 k ∈ C, (i, j) ∈ A F (7) 

 k ≥ 0 k ∈ C (8) 

 ∈ X (9) 

The left hand side of constraints (1) computes the travel time 

o reach a customer k ∈ C. Constraints (2) enforce flow conserva- 

ion, while constraints (3) and (4) forbid flow through arcs which 

re not in the tour. Constraints (5) require each customer to be 

erved, and constraints (6) - (8) define the variables domain. Finally, 

ith (9) , we guarantee that the arcs chosen from A F define a tour

omposed of facility locations and the depot. The set of possible 

ours X for the delivery truck must satisfy the degree constraints 

10) - (12) and the subtour elimination constraints (13) : 

 = { x ∈ { 0 , 1 } | A F | : 
x (δ−(i )) = x (δ+ (i )) i ∈ F (10) 

 (δ−(i )) ≤ 1 i ∈ F (11) 

 (δ+ (0)) = x (δ−(0)) = 1 (12) 

 (A (S)) ≤ | S| − 1 S ⊆ F , | S| ≥ 3 } (13) 

To model the min-max objective function, we introduce an 

uxiliary variable t ≥ 0 which represents the objective value. The 

verall model for the min-max URSP reads as follows: 

inimize { t : t ≥ w k s k , k ∈ C, (x, s, z, f ) satisfy (1)-(9) } 
We notice that constraints (1) - (9) may not be sufficient to pre- 

ent that facilities with no assigned customers are included in a 

our. These empty facilities could only appear at the end of the 

our, when the delivery truck is empty. Since it has no influence on 

he solution cost, they can be removed in a post-processing phase. 

therwise, if the travel times on A satisfy the triangle inequality, 
F 

6 
dditional constraints (15) can be added to ensure that a selected 

acility i ∈ F serves at least one customer: 

 (δ−(i )) ≤
∑ 

k ∈ C i 
z ik i ∈ F 

imilarly, constraints (13) are not redundant in our model. This is a 

ifference between the URSP and some classical network design or 

outing problems (see Section 2 ). In the ring-star problems for ex- 

mple, constraints (2) - (3) , together with non-negative route costs 

uarantee that optimal solutions will contain no subtours. How- 

ver, because there is no cost associated to variables x in the URSP, 

nd the objective function focuses on the tardiness indicators, if 

e leave out constraints (13) , redundant subtours could be created, 

nd they would need to be eliminated in a post-processing phase. 

The other two variants of the URSP can be modeled in a similar 

ay. First, the min-sum URSP, which aims at minimizing the sum 

f (weighted) tardiness, can be obtained as: 

inimize { ∑ 

k ∈ C 
w k s k : (x, s, z, f ) satisfy (1)-(9) } . 

The minimization of the (weighted) number of late deliveries in 

in-num requires new binary variables: l k equals 1 if customer k 

s served late, and 0, otherwise. Then, min-num URSP is modeled 

s: 

inimize { ∑ 

k ∈ C 
w k l k : s k ≤ (M k − u k ) l k , k ∈ C, 

(x, s, z, f, l) satisfy (1)-(9) , l ∈ { 0 , 1 } | C| } . 
here M k is an upper bound on the length of the path 

onnecting 0 to k , computed as M k = (| F | ∗ max (i, j) ∈ A F { t i j } +
ax (i,k ) ∈ A C { t ik } ) , ∀ k ∈ C. Variables l k are used to count the number

f late deliveries and the validity of the bound for M k follows from 

roperty 3 , i.e., the number of stops made by the delivery truck is 

t most | F | . 
In all three models, variables s k , k ∈ C assume positive values 

henever the traversal time of the path P T (0 , k ) chosen to reach

ustomer k is longer than the due date u k , as defined in con- 

traints (1) . Initial lower bounds for the values of s k , k ∈ C can be

btained in a combinatorial way, using the following proposition. 

roposition 4. For each k ∈ C, let P ∗
G 
(0 , k ) be the shortest path from

 to k on graph G , and t ∗G (0 , k ) its value, then s k ≥ [ t ∗G (0 , k )) − u k ] 
+ . 

roof. We have s k = [ t ∗
T 
(0 , k ) − u k ] 

+ ≥ [ t ∗
G 
(0 , k ) − u k ] 

+ as the

hortest path from 0 to k in G is shorter than the shortest path in

he subgraph of G induced by T . �

It is not difficult to see that variables z ik do not have to be bi-

ary in the above models. We have: 

bservation 5. In all three models described above, constraints 

 ik ∈ { 0 , 1 } can be replaced by z ik ≥ 0 , for all k ∈ C, i ∈ F (k ) , as flow

onservation constraints (2) will force them to assume integral val- 

es. 

MILP model (1) - (9) provides stronger lower bounds than some 

ompact formulations typically used in vehicle routing problems 

see, e.g., the Miller-Tucker-Zemlin formulations in Toth & Vigo 

2014) ). However, with the increasing number of customers, the 

odel becomes intractable for many modern MILP solvers, as the 

umber of decision variables is O (| C| · | A | ) . Fortunately, Observa-

ion 5 allows us to project out flow and assignment variables ( f

nd z, respectively) in a Benders-like fashion . Hence, at the cost of 

ntroducing a family of Benders cuts (which is exponential in size), 

he number of variables can be reduced to O (| A F | + | C| ) , making it

ntrinsically more scalable for larger input data. This, along with an 

fficient combinatorial algorithm for separating Benders cuts, will 

llow us to derive a highly effective exact solution method based 

n Branch-and-Benders-cuts, as detailed in the next section. 
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. Benders decomposition 

In the standard decomposition approach by Benders (1962) , a 

ixed integer linear program can be solved in an iterative fashion 

y keeping the “complicating variables” (whose values must be in- 

eger) in the relaxed master problem and projecting out continuous 

ariables (and the associated constraints) by replacing them with 

wo families of Benders cuts: optimality and feasibility cuts. The 

ormer ones are used to properly bound the contribution of con- 

inuous variables in the objective, and the latter ones are added 

o guarantee that any solution of the relaxed master problem re- 

ains feasible with respect to original constraints. For each solu- 

ion of the relaxed master problem, these cuts are separated by 

olving linear programs (LP), and hence, the process is repeated by 

lternating between solving integer linear programs (relaxed mas- 

er problem) and LPs (Benders subproblems), until an optimal so- 

ution is found. 

In this section we propose to solve the three variants of the 

RSP using a Benders decomposition approach in which routes for 

he distribution truck are generated at the master level (described 

y x variables), along with the delays s k (in time units) for serv- 

ng customers k ∈ C. Flow and assignment variables are eliminated 

rom the model, and hence, a vector (x, s ) obtained by solving the 

elaxed master problem does not necessarily correspond to a fea- 

ible solution. In the jargon of Benders decomposition, this means 

hat Benders feasibility cuts need to be generated to discard any 

nfeasible combination (x ∗, s ∗) in which delays s ∗ cannot be guar- 

nteed by letting the delivery truck follow the route described by 

 

∗ ∈ X . 

Our approach deviates from the above described classical Ben- 

ers decomposition approach in two important aspects: 

1. Benders feasibility cuts are typically separated by choosing (ex- 

treme) rays of the unbounded dual of the Benders subprob- 

lem. Many authors have observed that such implementations 

suffer from slow-convergence and instability, due to degener- 

acy of the underlying Benders subproblem and the fact that 

the rays returned by the LP solvers do not even have to be ex- 

treme ( Fischetti, Salvagnin, & Zanette, 2010; Magnanti & Wong, 

1981; Wentges, 1996 ). Some of the proposed techniques to al- 

leviate these issues are the generation of Pareto-optimal cuts 

( Magnanti & Wong, 1981; Papadakos, 2008 ), facet-defining cuts 

( Conforti & Wolsey, 2018 ) or a normalization of the dual of the

Benders subproblem ( Fischetti et al., 2010 ). Contrary to Fischetti 

et al. (2010) , who propose to intersect the unbounded dual 

cone with a simplex, we propose an alternative and problem- 

tailored normalization approach. Moreover, instead of solving an 

LP, our normalization allows to exploit an efficient combina- 

torial procedure inspired by the one of Magnanti, Mireault, & 

Wong (1986) to obtain the coefficients of the Benders cut. 

2. Instead of solving each relaxed master problem as an integer 

linear program (ILP) as done in traditional implementations, we 

follow the line of research in which Benders cuts are sepa- 

rated on the fly in a branch-and-cut fashion (also called Branch- 

and-Benders-cut). Recent studies have shown that the latter al- 

lows for a significant boost in the performance of MILP solvers 

( Contreras & Fernández, 2014; Fischetti, Ljubi ́c, & Sinnl, 2016; 

2017b ). 

.1. Problem reformulation using problem-tailored normalized 

enders cuts 

For the ease of explanation, we will focus on the min-max 
RSP variant, the other two variants can be modeled analogously. 

fter projecting out f and z variables from the MILP model shown 

n Section 4 , the relaxed master problem (RMP) is initialized as fol- 
7 
ows: 

min 

(t,s ) ≥0 
{ t : t ≥ w k s k , k ∈ C, x ∈ X } 

nce the solution (s ∗, x ∗) of the RMP is found, it has to be checked

hether there exists a possibility to ship the parcels through the 

etwork defined by the values of x ∗, and whether the tardiness for 

ach customer does not exceed s ∗. In a standard Benders decom- 

osition approach this is done by checking the feasibility of the LP 

efined by (1) - (5) in which the values of (x, s ) variables are fixed

o (x ∗, s ∗) . By Farkas Lemma, an (extreme) ray of the unbounded

ual of this LP is taken to generate a Benders feasibility cut that 

ill be added to the RMP to cut off the point (x ∗, s ∗) and the

rocess is repeated until a feasible (and hence optimal) (x ∗, s ∗) is

ound. 

However, we can look at the problem from a different perspec- 

ive. There are namely two possible sources of infeasibility of the 

olution of the RMP: a) there exists a customer k ∈ C such that 

here is no path between the depot and k in the network defined 

y x ∗, and hence the delivery time is equal to + ∞ , or b) all cus-

omers are connected to the depot, but there exists k ∈ C such that 

he parcel cannot be delivered within the deadline u k + s ∗
k 
. The 

rst source of infeasibility can be resolved by explicitly imposing 

onnectivity between the depot and each customer, adding con- 

traints: ∑ 

 ∈ F (k ) 

x (δ−(i )) ≥ 1 k ∈ C 

hich can be interpreted as Benders feasibility cuts, together with 

he subtour elimination constraints (which are part of the descrip- 

ion of the set X). 

To deal with the second source of infeasibility, we propose a 

roblem-tailored normalization approach. We first observe that, af- 

er adding the feasibility cuts of the first type, the min-max URSP 

an be reformulated as follows: 

min t (18) 

s.t. t ≥ w k s k k ∈ C (19) 

 k + u k ≥ θk (x ) k ∈ C (20) 

∑ 

 ∈ F (k ) 

x (δ−(i )) ≥ 1 k ∈ C (21) 

 ∈ X (22) 

, s k ≥ 0 k ∈ C (23) 

here, for a given route x ∗ ∈ X , the function θk (x ∗) calculates the 

erving time for a customer k ∈ C: 

k (x ∗) = min 

∑ 

(i, j) ∈ A F 
t i j f 

k 
i j + 

∑ 

i ∈ F (k ) 

t ik z ik (24) 

.t. 
∑ 

j∈ F 0 
f k ji −

∑ 

j∈ F 0 
f k i j = 

{ −1 , if i = 0 

z ik , if i ∈ F (k ) 
0 , otherwise 

i ∈ F (25) 

f k i j ≤ x ∗i j (i, j) ∈ A F (26) 

 ik ≤ x ∗(δ−(i )) i ∈ F (k ) (27) 
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∑ 

 ∈ F (k ) 

z ik = 1 (28) 

 ik , f 
k 
i j ≥ 0 (i, j) ∈ A F , i ∈ F (k ) (29) 

In the jargon of Benders decomposition, we observe that for any 

ector (x, s ) , Benders decomposition requires a solution of | C| in-

ependent subproblems of the form (24) - (29) , called Benders sub- 

roblem associated to customer k ∈ C (given in its primal form). 

emma 6. For any solution x ∗ ∈ X that satisfies constraints (21) , the 

enders subproblem (24) - (29) is feasible. 

roof. Each x ∗ ∈ X represents a non-trivial tour starting at the de- 

ot. Constraints (21) ensure that at least one among the facilities 

rom which customer k ∈ C can be reached, must be visited by the 

elivery truck. Hence, the values x ∗ provide a network along which 

ne unit of flow can be sent from the depot to each k ∈ C, which

s required to ensure that (24) - (29) is feasible. �

We observe that constraints (21) are implied by the compact 

odel, but once the flow variables are projected out, they need to 

e imposed explicitly. Furthermore, we observe that the results of 

emma 6 hold, even for fractional values of x ∗. 

The function θk (x ) is convex in x , and to derive a valid Benders

eformulation of the problem, we will replace the value function 

eformulation constraints (20) with an exponential family of linear 

nder-estimators of θk (x ) that we will refer to as normalized Ben- 

ers cuts . “Normalization” comes from the fact that the polytope of 

he unbounded dual of the Benders subproblem (when the prob- 

em is formulated in a traditional way, for separating Benders feasi- 

ility cuts) is intersected with a hyperplane in which the dual vari- 

ble associated to the constraint (1) is fixed to one. We point out 

hat our approach is different from a standard normalization recipe 

roposed by Fischetti et al. (2010) , in which the dual cone is inter-

ected with a simplex (i.e., the sum of all dual variables is imposed 

o be equal to one). The major advantage of our problem-tailored 

ormalization is summarized in the following proposition which 

ives a characterization of the Benders subproblem (24) - (29) . 

roposition 7. Let x ∗ ∈ X be a binary vector representing a subtour T 

hat contains node 0 and also satisfies (21) . Let F T ⊂ F 0 and A T ⊂ F T ×
 T represent the node set and arc set of T . Let G T = (F T ∪ { k } , A T ∪
 (i, k ) : i ∈ F T ∩ F (k ) } ) be the support graph that extends this subtour

o arcs connecting k . Then the primal Benders subproblem (24) - (29) is

he shortest path problem (SPP) on G T , whose value is t ∗
T 
(0 , k ) . 

roof. It is easy to see that objective function (24) together with 

onstraints (25), (28) - (29) provide a valid formulation for the SPP 

n the original graph G . Then, the inclusion of constraints (26) - 

27) forbid flow on those arcs for which the master solution x ∗
i j 

= 

 , (i, j) ∈ A F , and also prevent facilities disconnected from 0 from

erving customers. Consequently, only arcs in A T can be used to 

end flow from the depot to the last facility. Hence, the SPP is not 

onger solved on G , but on G T , which is a subgraph of G . �

Consequently, given a customer k ∈ C, and a solution of the re- 

axed master problem (x ∗, s ∗) , a path P T (0 , k ) from 0 to customer

 in subgraph G T defines a valid Benders cut if t ∗
T 
(0 , k ) > u k + s ∗

k 
.

oreover, valid Benders cuts can also be derived at fractional 

oints x that satisfy all the constraints from the set X . It is not 

ifficult to see that for fractional solutions x ∗ of the master prob- 

em, the primal Benders subproblem becomes the minimum cost 

ow problem on graph G , in which arc capacities are defined as x ∗
i j 

or (i, j) ∈ A F , and x ∗(δ−(i )) for (i, k ) ∈ A C . 

To derive appropriate Benders cuts, we exploit the LP-duality 

heory. The value of θk (x ∗) can be equivalently obtained by solv- 

ng the dual of (24) - (29) . As the following lemma shows, this dual
8 
an be slightly simplified. Let us associate the dual variables αi to 

onstraints (25) for i ∈ F 0 , −βi j with βi j ≥ 0 to constraints (26) for 

i, j) ∈ A F and αk to constraint (28) . 

emma 8. The dual Benders subproblem associated to customer k ∈ C

an be formulated as: 

ax −
∑ 

(i, j) ∈ A F 
x ∗i j βi j − α0 + αk (30) 

.t. − βi j − αi + α j ≤ t i j (i, j) ∈ A F (31) 

αi + αk ≤ t ik (i, k ) ∈ A C (32) 

i ∈ R , βi j ≥ 0 i ∈ V, (i, j) ∈ A F (33) 

roof. This dual formulation is obtained by eliminating constraints 

27) from the primal Benders subproblem as we will show that 

hey are redundant. Consider a facility node i ∈ F , and its incom- 

ng flow 

∑ 

( j,i ) ∈ δ−(i ) f 
k 
ji 

. By the flow preservation constraints, the 

ncoming flow is equal to the outgoing flow. By construction of 

raph G T and the nature of the objective function, either the to- 

al incoming flow will be routed within the facility subnetwork, or 

owards customer k . In the latter case, the flow routed from i to 

 corresponds to z ik , and we have z ik = 

∑ 

( j,i ) ∈ δ−(i ) f 
k 
ji 

≤ x ∗(δ−(i )) ,

here the last inequality follows from constraints (26) . �

We observe that the polytope 

 k = { (α, β) ∈ R 

| F 0 | + | A F | +1 : (α, β) satisfy (31)-(33) } 
oes not depend on x ∗ anymore, hence, by enumerating all ex- 

reme points (α∗, β∗) of P k , we can replace the non-linear con- 

traint (20) with the following exponential family of normalized 

enders cuts associated to customer k ∈ C: 

 k + u k ≥ α∗
k − α∗

0 −
∑ 

(i, j) ∈ A F 
β∗

i j x i j (α∗, β∗) ∈ ext (P k ) (34) 

Expression (34) can be further simplified by setting α0 = 0 

hen solving formulation (30) - (33) . Moreover, if βi j = 0 , ∀ (i, j) ∈
 F , then αk is expected to be equal to the length of the shortest 

ath from the depot to customer k on the support graph G T , as we

ill show later. 

.2. Combinatorial algorithm for separating normalized Benders cuts 

Feasible values for the dual variables (α, β) can be obtained 

y solving the linear program (30) - (33) for each k ∈ C with any 

vailable LP solver. However, the impact on the total computa- 

ional time caused by the successive calls to the solver on the Ben- 

ers subproblems is expected to grow with the problem size. As 

he number of facilities increases, so does the number of possible 

outes, which in turn requires more cuts to be generated. So as to 

void the computational burden of solving a LP for each subprob- 

em, one may want to compute the values for (α, β) in a combi- 

atorial (and faster) way. 

From Proposition 7 and Lemma 8 , we can solve the dual prob- 

em (30) - (33) by exploiting the structure of the classical shortest 

ath problem (SPP). Indeed, observe that the well known dual for- 

ulation for the SPP over the original graph G can be obtained 

rom model (30) - (33) by completely removing the β variables. 

onetheless, if not properly penalized in the objective function 

e.g., if x i j < 1 , ∀ (i, j) ∈ A F ), the presence of the β variables may

llow the path length constraints (31) to be relaxed, thus allowing 

he model to find artificially long paths. Consequently, the role of 

he master solution x ∗ on the dual objective function (30) is to re- 

train some of the β variables so that instead of solving the SPP 
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n the original graph G , model (30) - (33) is equivalent to solving

he problem on the support graph G T induced by x ∗, as discussed 

n Proposition 7 . 

The optimal shortest paths P ∗
T 
(0 , k ) over the support graph G T ,

or all k ∈ C, can be obtained by applying a labelling algorithm, 

imilar to Dijkstra’s algorithm on G T , with the advantage that it 

akes only O (| F T | ) time because G T is a tour. As a result, we have

hat α∗
0 = 0 and α∗

k 
= t ∗T (0 , k ) , i.e., the traversal time of P ∗T (0 , k ) . We

urthermore denote by t T (0 , i ) the length of the path from the de-

ot to facility i ∈ F T along this tour. 

When the Benders subproblem is a shortest path, Magnanti 

t al. (1986) showed (in the context of the uncapacitated net- 

ork design problem) that the coefficients of Benders cuts can 

e computed as indicated in Proposition 9 , which adapts their re- 

ult to our problem’s specificities and notations. Then we show in 

roposition 11 that this particular setting provides Benders cuts 

hat are particularly sparse for our problem. 

roposition 9. For a master solution x ∗ ∈ { 0 , 1 } | A F | and customer k ∈
, an optimal (α∗, β∗) solution for the Benders subproblem (30) - (33) 

an be computed as: 

∗
k = t ∗T (0 , k ) = min 

i ∈ T 
{ t T (0 , i ) + t ik } (35)

nd for facility nodes i ∈ F : 

(i ) α∗
i 

= t T (0 , i ) if i ∈ F T , i ∈ P ∗T (0 , k ) 

(ii ) α∗
i 

= min { t T (0 , i ) , α∗
k 

− t ∗G (i, k ) } if i ∈ F T , i / ∈ P ∗T (0 , k ) 

iii ) α∗
i 

= α∗
k 

− t ∗G (i, k ) if i ∈ F T̄ = F \ F T 
and finally 

∗
i j = max { 0 , α∗

j − α∗
i − t i j } , ∀ (i, j) ∈ A F (36) 

As a corollary, the separation of Benders cuts for x ∗ ∈ X and k ∈ C

an be performed in time O (| F T | ) . 
Note that in the strengthened Benders cuts of Magnanti et al. 

1986) , there is a single formula of α∗
i 

for any node i , which would

orrespond to α∗
i 

= min (t T (0 , i ) , α∗
k 

− t ∗
G 
(i, k )) with our time nota-

ion, i.e. formula (ii). Since in our problem a node i is not reach-

ble if i �∈ T , we need to distinguish three cases (i)-(iii), also for

he proof of Proposition 11 . The proofs for this and the following 

ropositions can be found in the Online Supplement (cf. Section 3 

 Structure of Benders Cuts). 

The major implication of the above result is that we can avoid 

olving an LP (or finding a min-cost flow) for calculating a violated 

enders cut. 

The following results provide additional theoretical argu- 

ents for choosing this specific calibration of Benders cuts. We 

how that the optimal dual multipliers (α∗, β∗) computed in 

roposition 9 result in sparse and numerically stable cuts for our 

pecific problem. We show below that more than 50% of β∗
i j 

multi- 

liers are equal to zero. If the values of t i j are integer, the cuts are

umerically stable because the dual multipliers are calculated in a 

ombinatorial way so that they also remain integer. On the con- 

rary, if one would use cut-generating LPs as an alternative way to 

erive Benders cuts (as e.g., for deriving Pareto-optimal or facet- 

efining cuts, see Magnanti & Wong (1981) and Conforti & Wolsey 

2018) , respectively), this numerical stability would be lost. 

emma 10. In the Benders cut s k + 

∑ 

(i, j) ∈ A F β
∗
i j 

x i j ≥ α∗
k 

− u k , the op- 

imal β∗ vector of Proposition 9 satisfies β∗
i j 

= 0 for: 

a) (i, j) ∈ A T 

b) (i, j) ∈ F T × F T , i is after j in the tour induced by A T , 

c) (i, j) ∈ F T̄ × F T , 
d) (i, j) ∈ F T̄ × F T̄ r

9 
roposition 11. If the optimal solution (α∗, β∗) of the Benders sub- 

roblem is computed as in Propositions 9 , and ρ = | F T | / | F 0 | denotes

he proportion of facility nodes, including 0, that are in tour T ( ρ ∈ 

 

2 
m 

, 1] ), where m = | F 0 | ), then the fraction of variables β∗
i j 

equal to

ero in the Benders cut is at least 

(ρ) = 1 − ρ + 

ρ2 

2 

+ 

1 . 5 ρ − 1 

m 

− 1 

m 

2 
≥ 1 

2 

. (37) 

oreover, we have lim ρ→ 2 /m 

g(ρ) = 1 − o(1 /m ) . 

We thus get that the fraction of β∗ variables equal to zero in 

ur Benders cuts is always at least 0.5, and tends to 1 when the 

our is small, the smallest tour being composed of a single di- 

ect trip from the depot to one facility ( ρ → 2 /m , i.e., | F T | → 2 ).

s mentioned earlier, sparser Benders cuts increase the computa- 

ional performance of the method, which could not be necessarily 

chieved without a combinatorial algorithm for the cut generation. 

. Implementation details 

In this section we provide implementation details and ex- 

lain how feasible solutions are obtained. In the initialization 

hase, we calculate combinatorial lower bounds according to 

roposition 4 and insert these values as default lower bounds for 

 k , k ∈ C. In addition, we add constraints (10) - (12) . 

.1. Separation algorithms 

There are two types of subtour elimination constraints that we 

onsider in our implementation: 

 (δ−(W )) ≥ 1 , k ∈ C, F (k ) ⊆ W ⊆ F , 0 �∈ W (38) 

nd 

 (δ−(W )) ≥ x (δ−(i )) , i ∈ W, 0 �∈ W. (39) 

Constraints (38) are separated only in the case F (k ) � = F . 

To this end, for a given fractional solution x ∗ of the master and 

 given k ∈ C, we generate an auxiliary graph G k = (F 0 ∪ { k } , A k ) ,

here A k = A F ∪ { (i, k ) : i ∈ F (k ) } and set the arc capacities to: 

ap(i, j) = 

{
x ∗

i j 
, if (i, j) ∈ A F 

∞ , otherwise 
(i, j) ∈ A k . 

If the maximum 0 − k flow on G k is smaller than one, let W 

e a subset of facilities inducing the associated min-cut, such that 

 ∈ W , and let W 

′ be another subset of nodes from F 0 ∪ { k } in-

ucing the min-cut, such that k ∈ W 

′ . Assuming that W ∪ W 

′ � =
 0 ∪ { k } , two valid cuts are then added to the model: x (δ+ (W )) ≥ 1

nd x (δ−(W 

′ ∩ F 0 )) ≥ 1 , referred to as forward and backward cut,

espectively. The maximum flow is calculated using the preflow- 

ush implementation by Cherkassky & Goldberg (1997) . See also 

 Gollowitzer & Ljubi ́c, 2011; Manerba et al., 2017 ) for the sepa-

ation of these cuts for related routing and network design prob- 

ems. Alternatively, to separate an integer solution x ∗, we perform 

 graph traversal on G k starting from 0, and add a violated cut for 

 customer that cannot be reached (if any). For the separation of 

onstraints (39) , see ( Fischetti et al., 2017a; Ljubi ́c et al., 2006 ). 

Finally, normalized Benders cuts (34) are separated at integer 

oints only (in the so-called lazy cut fashion ), and only when no 

iolated cuts of types (38) - (39) are found. For a given solution 

x ∗, s ∗) of the relaxed master problem and each k ∈ C, we find the

 − k shortest path on the support graph induced by x ∗, calculate 

he values of (α∗, β∗) according to Proposition 9 , and add the cor- 

esponding cut if s ∗
k 

< α∗
k 

− ∑ 

(i, j) ∈ A F β
∗
i j 

x ∗
i j 

− u k . 
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.2. Obtaining feasible solutions: a local search heuristic 

Feasible solutions are obtained by applying a simple construc- 

ive heuristic followed by a local search phase. Besides computing 

nitial upper bounds, this heuristic is also used as a primal heuris- 

ic within the branch-and-bound tree. It takes as input a set of 

vailable facilities F ′ : when the heuristic is called for the first time 

o initialize upper bounds we have F ′ = F , and within the branch-

ng nodes we define F ′ as a set of facilities visited by the current

P-optimal solution (x ∗, s ∗) , i.e., F ′ = { i ∈ F : x ∗(δ−(i )) > 0 } . 
In a pre-processing phase, the shortest paths P ∗G (0 , k ) from the

epot to each customer k ∈ C in G are pre-computed. The values 

 k − t ∗
G 
(0 , k ) (difference between the due date and the length of

he shortest path for each customer) are then stored in a sorted 

ist L in non-decreasing order. 

Construction phase: we initialize a new route T ′ with the depot 

nly. We then apply the following two steps: 

• Greedy insertion following the most-urgent-deadline-first policy: 

We select a customer from the top of the list L and follow the 

0 − k shortest path to insert all the facilities along this path to 

T ′ (the insertion consider only the facilities in F ′ which are not 

already in T ′ ). We apply the best insertion policy with respect 

to the total tardiness criterion , i.e., we choose the insertion po- 

sition so as to minimize the sum of tardiness for all reachable 

customers. The customer k is then removed from the list and 

this step is repeated until L is empty. 
• Greedy insertion of the remaining available facilities: If T ′ does 

not visit all the facilities from F ′ , we insert the remaining ones 

using the same best insertion policy from above. 

Local search phase: In the local search phase, we now try to im- 

rove the current tour T ′ by applying some of the standard moves 

ypically used in the vehicle routing literature ( Gendreau, Hertz, & 

aporte, 1994; Vidal, 2017; Vidal, Crainic, Gendreau, Lahrichi, & Rei, 

012 ). More precisely, we perform node re-insertions and swaps in 

 Variable Neighborhood Descent fashion ( Hansen & Mladenovi ́c, 

003 ), and finally remove unused facilities. 

This local search heuristic is used to initialize feasible solutions 

or all exact methods tested in our computational study. 

. Computational experiments 

This section presents the computational results obtained with 

he proposed formulations and decomposition methods. The goal 

s two-fold: 1) to demonstrate the computational efficiency of the 

roposed branch-and-Benders-cut approach when compared to al- 

ernative exact methods, and 2) to conduct a managerial study 

nalyzing how some of the major features (like the number of 

vailable facilities, the coverage radius or the travel speed of self- 

riving robots) affect the late deliveries. 

In what follows, we first present the computational setting. 

econd, we describe how the benchmark instances are generated. 

hird, the numerical results for each method are discussed and 

ompared. Finally, managerial insights are provided. 

The formulations, decomposition methods and other algorithms 

ere coded in C/C++ (compiled with the g++ 8.2 compiler) and ex- 

cuted on an Intel® i7-7820X 

TM 4.0 GHz CPU, with 64.0 GB of RAM 

unning under GNU/Linux Arch ( kernel 4.20). IBM CPLEX® 12.8 was 

sed as the LP and MILP solver. A single computation thread was 

sed during all the experiments. 

In addition to the proposed URSP MILP formulation given in 

ection 4 , three Benders decomposition procedures were imple- 

ented; 

• Auto-Benders , obtained by solving the URSP model with the 

built-in Benders decomposition implemented by CPLEX. In 
10 
practice, we relaxed the integrality constraints on the flow and 

assignment variables and select the fully automated strategy. 
• LP-Benders , implemented as described in Section 5 , and the 

Benders cuts are obtained by solving the subproblems (24) - (29) 

as LPs. 
• SP-Benders , where the Benders cuts are computed using the 

combinatorial shortest path-based (SP) procedure described in 

Section 5.2 . 

A computation time limit of one hour (3600 s) was imposed 

or each instance. All the other parameters of CPLEX were left 

t their default values. Additionally, all the methods are initial- 

zed with a feasible solution obtained by applying the local search 

euristic described in Section 6.2 . 

.1. Instance generation 

The instances were generated by a procedure similar to the one 

escribed by Boysen et al. (2018) . Both facilities and customers co- 

rdinates are uniformly generated on a 10 km square grid. Each 

enchmark set contains either 25 or 50 symmetric Euclidean prob- 

ems which are classified according to the number of facilities and 

ustomers. 

The travel times among facilities are based on an average truck 

peed of 30 km/h as in Boysen et al. (2018) . Likewise, in the default

cenarios, the travel times between facilities and customers were 

efined for autonomous robots moving at 5 km/h, i.e., at pedes- 

rian speed. For each customer k ∈ C, the due date is computed 

s: 

 k = t ∗G (0 , k ) × (ρmin + δk (ρmax − ρmin )) 

The parameters { ρmin , ρmax } control the tightness and the 

idth of the due dates time horizon, and the random number δk , 

rawn uniformly from the interval (0,1], defines how the due dates 

re spread. Based on preliminary experiments, the more challeng- 

ng problems are those with tighter due dates. Such instances can 

e obtained by setting ρmin = 1 . 

During our experiments the most restrictive scenarios in terms 

f facility-customer coverage were obtained by setting the robot 

peed to 5 km/h and the robot coverage radius to 30 min. To gen- 

rate feasible instances we made sure that each customer can be 

eached by at least one facility and that each facility can reach at 

east one customer. 

.2. Analysis of computational performance 

In this section we discuss the numerical results obtained with 

he four proposed methods for solving the URSP (MILP Formulation 

rom Section 4 , Auto-Benders, LP-Benders and our SP-Benders ap- 

roach) and compare their performance. When running the com- 

act MILP formulation from Section 4 , we leave out the subtour 

limination constraints (as they will not affect the solution value, 

nd redundant subtours could be removed in a post-processing 

hase). 

The experiments were carried on benchmark problems with 

 C| ∈ { 25 , 50 , 75 , 100 } customers, and | F | = 20 facilities. The prob-

ems are grouped according to the number of customers and for 

ach group 25 instances were generated. The customer deadlines 

ere generated using ρmin = 1 and ρmax = 5 . The speed of au- 

onomous robots was set to 5 km/h with no coverage radius limit. 

he three tardiness objective functions were used with uniform 

eights w k = 1 . 0 , for all k ∈ C. The results obtained by each of the

our methods are detailed in Table 1 . For each instance group and 

bjective function, we provide the number of instances solved to 

ptimality within the time limit (#Solved), and the corresponding 

verage CPU time in seconds. For those instances which were not 
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Table 1 

Comparison of the four URSP solution methods using the three objective functions and tight delivery deadlines. 

Compact Formulation (cf. Section 4 ) 

min-max min-num min-sum 

Instances #Solved Time (s) Gap (%) #Solved Time (s) Gap (%) #Solved Time (s) Gap (%) 

ursp_20_25 23 626.50 1.36 23 1090.87 6.66 21 1016.41 13.09 

ursp_20_50 17 1714.56 20.65 6 3074.85 74.50 11 2640.79 46.45 

ursp_20_75 10 3005.53 46.31 0 3600.00 95.86 1 3459.05 82.59 

ursp_20_100 0 3600.00 95.90 0 3600.00 99.83 0 3600.00 95.26 

Total/Avg. 50 41.06 29 69.21 33 59.35 

Automatic Benders 

min-max min-num min-sum 

Instances #Solved Time (s) Gap (%) #Solved Time (s) Gap (%) #Solved Time (s) Gap (%) 

ursp_20_25 15 1568.36 35.84 19 944.43 20.00 12 1989.87 40.20 

ursp_20_50 14 1643.19 28.58 11 2192.42 44.13 9 2577.34 49.58 

ursp_20_75 13 1932.53 22.24 4 3092.88 63.81 2 3332.49 77.41 

ursp_20_100 9 2617.63 35.64 4 3117.09 68.97 0 3600.00 87.29 

Total/Avg. 51 30.58 38 49.23 23 63.62 

LP-Benders 

min-max min-num min-sum 

Instances #Solved Time (s) Gap (%) #Solved Time (s) Gap (%) #Solved Time (s) Gap (%) 

ursp_20_25 10 2317.31 40.55 15 1645.92 32.00 10 2333.23 47.75 

ursp_20_50 10 2844.46 47.44 9 2693.18 51.86 4 3180.70 58.39 

ursp_20_75 3 3272.03 51.52 3 3271.28 64.86 2 3448.40 73.02 

ursp_20_100 2 3454.41 62.68 2 3373.58 74.51 0 3600.01 81.88 

Total/Avg. 25 50.55 29 55.81 16 65.26 

SP-Benders 

min-max min-num min-sum 

Instances #Solved Time (s) Gap (%) #Solved Time (s) Gap (%) #Solved Time (s) Gap (%) 

ursp_20_25 25 253.65 0.00 23 416.10 4.00 21 770.75 3.68 

ursp_20_50 21 669.23 8.31 20 934.39 8.93 18 1137.66 12.52 

ursp_20_75 23 525.43 5.14 15 1572.36 14.84 17 1609.58 11.66 

ursp_20_100 21 1020.25 5.48 12 2175.63 18.82 15 1982.82 15.86 

Total/Avg. 90 4.73 70 11.65 71 10.93 
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olved within the time limit, the average gap between the best in- 

eger solution found (among the four methods) and the best lower 

ound (for each method) is reported. 

In total, SP-Benders was able to solve to optimality 231 in- 

tances out of 30 0 (10 0 instances per each objective function). At 

he same time, the compact formulation and automatic Benders 

pproach find optimal solutions for only 112 instances, whereas for 

P-Benders this figure drops to 70. As expected, the compact MILP 

ormulation scales very badly with the increasing number of com- 

odities: already for | C| = 75 and the min-num objective function 

ot a single instance could be solved to optimality, and the aver- 

ge gap for the unsolved instances is higher than 95%. The remain- 

ng three Benders decomposition methods scale better with the in- 

reasing size of C, but there are still significant differences between 

hem. SP-Benders drastically outperforms all other methods both 

n terms of computational time and average gap. SP-Benders shows 

n average gap lower than 12% over all unsolved instances and all 

hree objective functions, whereas for the second best approach, 

uto-Benders, this gap is above 60%. The weak performance of LP- 

enders can be explained by the fact that the dual Benders sub- 

roblem is highly degenerate, so that the optimal dual solution 

α, β) obtained from the LP solver produces numerically unstable, 

ossibly too dense and shallow cuts. Auto-Benders uses sophisti- 

ated stabilization techniques (see, e.g., in-out approach described 

n ( Fischetti et al., 2017a )) to overcome these issues, whereas our 

P-Benders relies on normalization, sparsity of derived cuts and 

heir numerical stability thanks to the combinatorial procedure for 

alculating the dual multipliers (cf. Propositions 9 and 11 ). 

Table 1 also shows that the min-num and min-sum objec- 

ive functions are generally more computationally expensive than 
n

11 
he min-max objective function, and that the amount of instances 

olved to optimality decreases as the number of customers in- 

reases. Nevertheless, the performance of SP-Benders remains sta- 

le even with the increasing number of customers, and shows 

he potential of our method to be applied to even larger in- 

tances. Additional analysis of the computational performance for 

he min-max objective function is provided in the Online Supple- 

ent. 

.3. Managerial insights 

In this section we analyze how the QoS is affected by the num- 

er of available facilities, the speed of robots and their coverage 

adius. In addition, to assess the environmental impacts, we focus 

n the savings in km (and respectively the CO 2 emissions) for the 

elivery trucks. This emission analysis is the most suitable for our 

urposes, given the differences in electricity generation (for pow- 

ring the robots) between different cities/countries. Assuming that 

he delivery trucks do not belong to the last-generation vehicles, 

e estimate emission of 200 g of CO 2 per kilometer and estimate 

nnual CO 2 emissions assuming 300 working days per year. We 

lso report the length of the paths traversed by the robots. 

We are not analyzing operational costs, as done in e.g., 

rotcorne et al. (2019) and Perboli & Rosano (2019) or Bakach 

t al. (2021) , for several reasons: 1) Our model deals with oper- 

tional (scheduling) decisions while assuming that the underlying 

nfrastructure (robots, facilities, delivery truck with a sufficiently 

arge capacity) is available. 2) Investment cost data (e.g., operat- 

ng costs related to fleet management and maintenance, person- 

el costs, costs per stop, etc) vary between cities and organiza- 
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Fig. 3. Effect of increasing the number of facilities, device speed and radius to the quality of solutions. 

Table 2 

Parameters used for the managerial study. 

Parameters Values 

Number of Customers ( | C| ) 50 

Number of Facilities ( | F | ) 10, 15, 20 ∗ , 25 

Device speed (km/h) 5 ∗ , 6, 10, 15 

Device coverage radius (R min.) 30, 35, 40, 45, 60 ∗

Objective function min-max ∗ , min-sum , min-num 
∗ default values. 
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ions; 3) In a case study conducted by Bakach et al. (2021) the au-

hors show that, compared with conventional truck-based deliver- 

es, robot-based deliveries can save about 70% of operational cost. 

herefore, in this section we focus on the impact of the available 

nfrastructure and technology on: a) the quality of service, and b) 

he environmental costs. 

The obtained results are summarized in Table 3 and Fig. 3 . Each 

ow in Table 3 reports average values across 50 instances from 

ur benchmark set. When varying the number of available facili- 

ies (respectively, the robots’ speed or coverage radius), we report 

he average number of used facilities in an optimal solution (sec- 

nd column), the average distance (in km) traveled by the delivery 

ruck (third column), the average distance (in km) traveled by all 

obots (fourth column), and the average distance (in km) traveled 

y each robot (last column). In Fig. 3 we vary the same parame- 

ers and report the average solution value (max-tardiness in our 

ase), together with the bars corresponding to the 95% confidence 

nterval. 

By default, we consider the maximum tardiness indicator as the 

bjective function. Table 2 summarizes the values of the test pa- 

ameters. The selected intervals are based on the technical capabil- 

ties of existing delivery robots. For example, on the most conser- 

ative side we have the autonomous robots produced by Starship 

2020) , with a maximum speed of 6 km/h and maximum cover- 

ge range of 6 km, on the other side we have the robots produced

y e novia (2020) , which have a maximum coverage radius of 80 

m and different speed modes: it imposes a maximum speed of 6 

m/h on sidewalks (pedestrian speed), and can travel at up to 20 

m/h using bicycle lanes. 

Effect of increasing the number of facilities. In this setting, we it- 

ratively expanded the set of available facilities from | F | = 10 to 

 F | ∈ { 10 , 15 , 20 , 25 } by adding facilities to existing ones, with a

niform distribution in the space. The chart given in Fig. 3 a shows 

hat the maximum tardiness improves in a rather linear way with 

he increasing number of facilities available for robot delivery, with 

 gain of 30% when doubling the number of facilities. Interestingly, 
12 
able 3 shows that the average number of the facilities visited by 

he truck increases very little (from 5.84 for | F | = 10 , to 6.18 for

 F | = 25 ) indicating that the underlying cost per stop might not be

ignificantly affected, even if a larger number of facilities is avail- 

ble. From the same table we observe that the length of the aver- 

ge truck route can be shortened by less than 10%, without a sig- 

ificant increase in the distances traveled by robots. Overall, these 

esults indicate that the larger number of available facilities en- 

bles the delivery truck to get closer to customers and thus, to 

educe the overall tardiness, while visiting ≈ 6 facilities on aver- 

ge. We conclude that a denser infrastructure in terms of avail- 

ble facilities has a high impact on the QoS and on-time delivery 

ndicators. However, when it comes to environmental costs, only 

oderate savings of CO 2 emissions could be achieved: increasing 

he number of available facilities from 10 to 25 results in annual 

avings of ≈ 147 kg CO 2 , for a single urban area represented by a 

0 km square grid. 

Let us now focus on a logistics service provider and compare 

wo possible solutions: 1) vertical integration of the last-mile de- 

ivery using own infrastructure (i.e., distribution facilities and self- 

riving robots) versus 2) outsourcing to one or several third-party 

ogistics (3PL) providers that offer the last-mile delivery using their 

wn distribution facilities and self-driving robots. As we can see 

rom Fig. 3 a, having a larger set of available facilities is highly ben- 

ficial for reducing the late deliveries. On the other hand, the up- 

ront investment cost for constructing/renting distribution facilities 

ay be quite large for a single company. Therefore, it can be in- 

eresting for the LSP to expand the infrastructure by adding the 

acilities of another 3PL provider as soon as it significantly im- 

roves the coverage of the service area, and potentially sign con- 

racts with multiple 3PL providers, sorting them by marginal im- 

rovement of the QoS. A full economic analysis and trade-off cost 

tudy, introducing the costs per stop of standard delivery, could be 

urther conducted, following the findings of, e.g., Brotcorne et al. 

2019) and Perboli et al. (2018) . 

Effect of increasing the device speed. 

In this experiment, we change the robot speed from 5 to 6, 

0 and 15 km/h, respectively, while keeping | F | = 20 , R = 60 min,

 C| = 50 . Fig. 3 b shows that a significant gain in the QoS is ob-

ained by employing robots with higher speed (the max-tardiness 

f more than 6 min drops down to near zero when robots with 

 km/h speed are replaced by ones with the speed of 10 km/h). 

urprisingly, faster robots seem to be useful only up a certain 

hreshold. For example, on our benchmark set the max-tardiness 

an no longer be improved by employing robots whose speed is 

5 km/h, which can be explained by the fact that already with the 

peed of 10 km/h, most of the customers could be reached in due 
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Table 3 

Solution properties when varying number of available facilities, robots’ speed and their coverage radius. 

Varying Number of Facilities 

Avg. tour Avg. truck Avg. all robots Avg. single robot 

| F | #Facilities travel distances (km) travel distances (km) travel distance (km) 

10 5.84 28.91 183.87 3.68 

15 6.00 27.95 183.87 3.68 

20 6.06 27.26 183.29 3.67 

25 6.18 26.46 184.59 3.69 

Varying Robots’ Speed 

Speed Avg. tour Avg. truck Avg. all robots Avg. single robot 

(km/h) #Facilities travel distances (km) travel distances (km) travel distance (km) 

5 6.06 27.26 183.29 3.67 

6 5.46 24.17 202.12 4.04 

10 4.28 19.68 264.10 5.28 

15 2.90 16.01 360.67 7.21 

Varying Robots’ Coverage Radius 

Radius Avg. tour Avg. truck Avg. all robots Avg. single robot 

(minutes) #Facilities travel distances (km) travel distances (km) travel distance (km) 

30 9.08 39.79 143.04 2.86 

35 7.90 35.14 154.56 3.09 

40 7.46 32.46 161.21 3.22 

45 6.92 30.33 169.29 3.39 

60 6.06 27.26 183.29 3.67 

Fig. 4. URSP selected solutions for robot speed ∈ { 5 , 15 } km/h. 
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ime. Naturally, this threshold switch varies with the problem data. 

he optimal selection of the speed of robots depends on the struc- 

ure of the underlying city network, and hence needs to be numer- 

cally tested on the specific case study. 

Table 3 provides complementary information with respect to 

ig. 3 b. Besides the significant reduction of the maximum tardi- 

ess, we observe another general trend: by increasing the speed of 

obots, less facilities are being visited (the average number of stops 

rops down from 6 to 2.9), the routes of the delivery truck are be-

oming shorter (the average length drops down from 27.3 km to 

6 km), which in turn leads to longer distances traversed by self- 

riving robots (the average distance traversed by a robot doubles 

rom 3.7 km to 7.2 km). In terms of annual CO 2 emission savings, 

ncreasing the speed of robots from 5 km/h to 15 km/h, results in 

nnual savings of ≈ 675 kg CO 2 , for a single urban area repre- 

ented by a 10 km square grid considered in our study. 
13 
Fig. 4 shows optimal solutions for an URSP instance in which 

he robot speeds are set to 5 and 15 km/h, respectively. Besides 

he significant reduction of the maximum tardiness (from ≈ 11 to 

0 . 5 min), the example also shows that for the given instance the 

ruck route is reduced by more than 50%, whereas the average dis- 

ance traveled by robots increases by approximately 45%, and fewer 

acilities are visited. 

Effect of increasing the coverage radius. In this experiment we 

hange the coverage radius of robots from 60 to 45, 40, 35 and 

0 min, while keeping | F | = 20 , | C| = 50 , and the speed of 5 km/h.

gain, the gain in the QoS is significant up to the point where 

he radius is large enough to cover all customers in due time. The 

urve of Fig. 3 c has a convex shape, which indicates that the lower 

he radius of the current technology, the higher the marginal im- 

act of increasing it. Table 3 provides more detailed information 

or all instances from our benchmark set. As in the previous case, 
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Fig. 5. Trade-offs among the three objective functions studied. 

Table 4 

Comparing the quality of optimal solutions with respect to three different KPIs. Each row corresponds to 

optimal solutions for 25 instances obtained by one of the three objective functions. Each column shows 

the KPI evaluation of these solutions. 

max sum num 

Objective Median Mean Median Mean Median Mean #Opt 

min-max (3.57) (4.74) 3.57 5.99 14.60 13.06 25 / 50 

min-sum 5.40 15.63 (5.40) (11.69) 15.79 20.75 25 / 50 

min-num 3.00 3.72 3.00 2.72 (2.00) (1.72) 25 / 50 
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hen increasing the radius we notice a general trend that less fa- 

ilities are visited (the number of stops drops from 9 to 6), the 

ruck routes are shorter (the average length drops from ≈ 40 km to 

7.3 km) and the distances traversed by robots are longer (on aver- 

ge, the length of a robot’s route increases from 2.9 km to 3.7 km). 

Hence, among the three factors analyzed in this work, increas- 

ng the coverage radius of robots from 30 to 60 min, has the high-

st environmental impact in terms of annual CO 2 emissions sav- 

ngs. Annual savings of ≈ 750 kg CO 2 can be achieved for a single 

rban area represented by a 10 km square grid considered in our 

tudy. 

.3.1. Comparing how the choice of the KPI affects the resulting 

olution 

In this article, we have suggested three tardiness KPIs as pos- 

ible objective functions: min-max , min-sum and min-num . We 

ow attempt to answer the question: how does the choice of the 

PI influence the quality of the obtained solution, i.e., if we were 

o find an optimal schedule according to, say, min-max criterion, 

ow does such solution perform with respect to the other two cri- 

eria, namely min-sum and min-num ? 
To answer this question, in Fig. 5 and Table 4 we com- 

are how the value of the objective function changes when the 

ame solution is evaluated using an alternative lateness indica- 

or. For example, we take the solutions found by our method us- 

ng the min-sum objective function and evaluate them using the 

in-num and min-max objectives, and vice-versa. That way, we 

ndirectly measure how different the solutions are. For this anal- 

sis, we consider all the instances from our benchmark set with 

he default setting | F | = 20 , | C| = 50 , the speed of 5 km/h, and the

overage radius of 60 min. The obtained results are summarized in 

ig. 5 and Table 4 . 

In Fig. 5 a, the boxplots show the distribution of the maxi- 

um tardiness by evaluating the cost of the optimal solutions ob- 

ained by all three objective functions using the min-max objec- 

ive function. Similar re-evaluations of optimal solutions using the 
14 
in-sum and min-num KPIs are shown in Fig. 5 b and c, respec- 

ively. 

From Fig. 5 a and b, we observe that the min-max and 

in-sum objective functions behave in a similar way, with the 

ame median values obtained when switching from min-max to 

in-sum and vice-versa. The average optimal min-max tardiness 

s 4.74 min (cf. Table 4 ), and it increases to 6 min (on average) if an

ptimal min-sum solution is taken instead. Similarly, the average 

ptimal min-sum tardiness is 11.7 min, and this value increases 

o 15.6 min (on average) if an optimal min-max solution is taken 

nstead. 

These deteriorations of the average objective value are much 

ore pronounced for the min-num KPI that turns out to be sig- 

ificantly more disruptive compared to the other two KPIs. Indeed, 

he min-num objective induces a deterioration of max-tardiness 

f 175% and sum-tardiness of 77% on average, with a factor 3 to 4 

or the median. This can be explained as follows. To minimize the 

umber of late customers ( min-num ), the model sacrifices a few 

ustomers that will be served very late as tardiness measured in 

ime units is no more controlled, in order to serve more customers 

n due time, and vice-versa. 

Overall, the obtained results indicate that min-sum and 

in-max solutions are very similar, but that they can be quite 

ifferent from the solutions obtained when min-num KPI is op- 

imized. We therefore conclude that, if the decision-maker wishes 

o control both conflicting criteria (which are the number of late 

ustomers and the total/max tardiness), both of them should be 

ncluded in the decision model. This can be achieved for example 

y fixing an upper bound on one of these criteria while optimizing 

nother. 

. Concluding remarks 

Last-mile delivery is currently being disrupted by the introduc- 

ion of innovative technologies like self-driving robots, drones and 

ther autonomous devices which impact delivery cost and safety. 

n this paper we studied a scheduling problem in this disruptive 
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nvironment from the perspective of a logistics service provider: 

he problem optimizes the quality of service (on-time deliveries) 

y combining routing and last-mile delivery decisions, where 

he last-mile delivery is performed by self-driving robots. Given 

he limited capacities of an LSP (namely, the existing logistics 

etwork, current resources and available technology), there is 

otentially a large number of customers that will be served late. 

e proposed to optimize the delivery schedule by controlling one 

f the three key performance indicators: maximum tardiness over 

ll customers, total tardiness, or the number of late deliveries. We 

rovided a compact MILP formulation and a problem reformulation 

ased on normalized Benders cuts. We showed that the separation 

f normalized Benders cuts is tractable and can be solved in a 

ombinatorial fashion by employing a labelling algorithm. Our nor- 

alized Benders cuts provide sparse and numerically more stable 

uts than their generic counterparts obtained by solving a linear 

rogram. Our exact method based on branch-and-Benders-cut 

llowed us to efficiently solve the problem on realistic instances 

f larger size. 

Several managerial insights have been also derived. One of the 

ey take-aways is that all three tardiness indicators are very sensi- 

ive to the number of available facilities. This should drive the LSP 

o sign contracts with several third party providers that use robot- 

eliveries, if available, to improve the coverage of the network and 

et closer to customers. The three tardiness KPIs are also highly 

ensitive to the speed and coverage radius of the self-driving 

obots, up to the point where speed or radius get high enough 

o cover all customers in due time. Finally, our tests showed that 

he total/maximum tardiness and the number of late deliveries are 

omewhat conflicting criteria that do not necessarily behave in the 

ame way. These key performance indicators could be controlled 

n the same decision model to improve the quality of service. The 

roblem defined in this paper is generic and could be extended to 

any real-case applications and variants. 

When it comes to future work, several interesting directions 

re possible. For example, for VRP applications with large scale 

nput data, the state-of-the-art methods are typically based on 

ath/metaheuriscs ( Gendreau et al., 1994; Vidal, 2017; Vidal et al., 

012 ). We therefore believe that developing matheuristics derived 

rom the proposed mathematical framework could be a promis- 

ng direction for future research, in particular for the logistics 

roviders whose business model is based on the same-day deliv- 

ry. Another promising direction would be to replace the stan- 

ard delivery truck in our model by (a fleet of) electric vehicles 

 Desaulniers, Errico, Irnich, & Schneider, 2016 ). Also, the available 

umber of self-driving robots at any given facility may be limited, 

hich leads to natural extensions of the proposed problem to the 

ariants of the Capacitated Routing-Scheduling Problem, that can- 

ot be handled directly with the same techniques developed in 

his paper. Stochastic problem variants that capture the uncertainty 

n travel times, would result in more challenging but highly inter- 

sting models for future research. 

In addition, extending our concept of due dates to time- 

indows and comparing different delivery policies (e.g., same- 

ay delivery versus next-day delivery with a time-window – see 

anerba, Mansini, & Zanotti (2018) for a related VRP study) could 

rovide interesting insights concerning the environmental impacts 

nd trade-offs between different delivery policies. Finally, our 

odel could also be a useful tool for conducting a full economic 

nalysis that addresses strategic questions such as: which facilities 

o open, with which capacity, and what should be the size of the 

obot fleet. Such economic analysis would need to be done in a 

imulation-optimization environment, similarly as done in Perboli 

t al. (2018) and Perboli & Rosano (2019) , in which our new algo-

ithm could be plugged in as a black-box exact solution method. 
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